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Abstract Control Co-Design (CCD) is a method used to optimally design me-
chanical systems which involves desinging the systems parameters and controling
the system at the same time. This method had potential to be less time consum-
ing and more efficent than traditional methods used to design systems where an
iterative process is used. In this paper, CCD is applied to a bipedal walking robot
known as the compass gait in order to optimize the masses of the upper body and
legs and the length of the legs in order to reduce the torque needed to control
the system and reduce the time per cycle when walking. A trajectory generation
method was also used in this paper to ensure stability of the compass gait system,
as the passive compass gait has a very small range of initial conditions for which
the system is stable for. During the optimization process the cost of control for the
compass gait was reduced by 10.83% when compared to a compass gait using only
open loop control. The torque needed to control the compass gait was also reduced
by 78.2% and the time per cycle was reduced by 10.6%. It was also shown that
even a simple optimization problem of the passive compass gait can increase the
range of stability for the system. When a passive compass gait was optimized to
maximize the hip mass, it was shown that not only can the hip mass be optimized
by chaning the system parameters, but when simulating the optimized compass
gait with the same initial conditions which cause a unstable passive system, the
optimized system was stable.

1 Introduction

Control Co-Design (CCD) is a design method used to optimally design a system’s
parameters and control the system at the same time. Traditionally in engineering,
when a system is designed an iterative process is used to determine the best
parameters for the system; however, this can be time consuming and inefficient.
It has been shown in [1] that CCD can be used to improve the weight reduction
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of a high-acceleration precision motion system by 42%, and the bandwith of the
system by 28%. It has also been shown in [2] that CCD can be used to control
other non-mechancial such as thermal management systems.

CCD can be used in junciton with optimal control algorithms with the objective
of minimizing or maximizing a desired cost function. One excellent resource used
in this paper to perform both CCD and optimal control in a bipedal walking
robot is Dymos [3]. The Dymos multidisciplinary optimal control library provides a
platform to build and control systems with a variety of different control algorithms.

In this paper, CCD is used to design the system parameters of an underactuated
bipedal walking robot known as the compass gait. The limit cylce of the compass
gait model aswell as the effect of changing system parameters has been thoroughly
studied in [4] and [5]. Control of the compass gait robot as also been acheived using
passive methods such as potential energy shaping [6] and active methods such as
MPC Control [7]; however, CCD has not been applied to the compass gait model.
In this paper CCD is applied to the compass gait model using open loop control
and trajectory optimization with Dymos.

2 Introduction to the Compass Gait

The compass gait model is an underactuated two legged robot capable of pas-
sively walking downhill under the right initial conditions. Shown in Figure 1 is
a schematic showing the compass gait and its respective system parameters. The
two leg masses are modeled as point masses with leg lengths a and b below and
above the point mass making a total leg length l. The upper body of the robot is
approximated as a point mass applied at the hip, mH . The state variables of the
system are the swing leg angle (the back leg) θsw and the stance leg (the front leg)
angle θst. A torque, τ is applied at the hip to each leg in the opposite direction.
The angle of the ramp which the compass gait walks on is γ.

Fig. 1 Schematic of the compass gait model. Angles θsw and θst are shown as the swing leg
angle and stance leg angle, respectively.
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In order to use the compass gait model a few assumptions must be made about
the system. First, since the compass gait does not have the ability to bend at the
hip, it must be assumed that during the swing, the swing leg retracts so that it
does not collide with the ground during the swing phase. It is also assumed that
a perfectly inelastic collision without sliding occurs the instant the swing leg hits
the ground. The compass gait is an extremely simple model, however it should be
noted that physical models of the compass gait have been built in [8].

In order to create a state space realization of the compass gait model a state
matrix must be defined. For simplicity the swing and stance angles are renamed
to x1 and x2, respectively, with x3 and x4 being the anguar velocities of the swing
and stance legs. The state matrix X is shown in equation 1.

X =



x1

x2

x3

x4


,

x3
x4

 =

ẋ1
ẋ2

 (1)

The dynamic equations of the swing stage of the compass gait, from [5], can be
written in standard planar manupular dynamics form. This is shown in 2, where
M, N, and G are matrices shown in the appendix, and U is the vector used to
apply the torque to each leg, shown in 3.

M(X)Ẍ+N(X, Ẋ)Ẋ+G(X) = τU (2)

U =



1

−1

0

0


(3)

Since heel strike (when the swing leg collides with the ground) is modeled as
a perfectly inelastic collision, there is an instantaneous angular velocity change
when heel stike occurs. Also, since the swing leg becomes the stance leg after heel
strike, the angles x1 and x2 must be switched in the mathematical model after each
walking cycle. The transition matrices used to switch x1 and x2 as well as calculate
the updated angular velocities after heel strike are shown in 4 and 5, where x+

represents the state variable after heel strike and x− represents the state variable
before impact, Q− and Q+ are the angular velocity transition matrices shown in
the appendix.
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x+1
x+2

 =

[
0 1
1 0

]x−1
x−2

 (4)

Q+

x+3
x+4

 = Q−

x−3
x−4

 (5)

3 Natural Limit Cycles of the Passive Compass Gait

It is important to define stability in the context of the compass gait for this
paper. One possible meaning of stability in this context is that, while walking, the
compass gait procedes forwards in a controlled manner and takes the same ”path”
for each walking cycle. Or perhaps stability could be mathematically defined using
Poincaré maps. While both of these definitions of stability are valid, stability in
this paper simply refers to the ability of the compass gait system to continue
walking forwards for the defined number of cycles.

When simulating the passive compass gait system, it can be observed that the
stability of the compass gait is heavily dependent on the given initial conditions and
system parameters. It can also be observed that the basin of stability is extremely
small and it is almost impossible to ”guess” the correct IC’s and system parameters
to create a stable walking system. This is one of the main issues of the compass
gait.

When using stable initial conditions, the compass gait can be simulated over
one or multiple walking cycles. Shown in Figure 2 is an example of a stable limit
cycle for the compass gait over one walking cycle. As can be seen, the swing leg
makes a large arc during the swing phase of the compass gait, while the stance leg
pivots in place. The state variables during this walking cycle are also shown over
time in Figure 3.

0.3 0.2 0.1 0.0 0.1 0.2 0.3
Angle (rad)

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

An
gu

la
r v

el
oc

ity
 (r

ad
/s

)

swing foot
stance foot

Fig. 2 One walking limit cycle of the compass gait. The swing leg makes a large swing (shown
in blue, a large cicle) around while the stance leg only pivots (shown in orange.)
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Fig. 3 States of the compas gait over time for one walking cycle.

Figures 2 and 3 show the compass gait when stable initial conditions are used;
however, most initial conditions given to the compass gait system result in an
unstable system. An example of a unstable gait is shown in Figure 4, where the
initial angular velocities are not sufficent to overcome gravity, and the compass
gait cannot start a cycle and will eventually fall down. It can be seen in this
figure, that the swing leg initial angle is approximataly equal to the final angle of
the swing leg, and the stance leg starts going forward, but runs out of momentum
before falling backwards.
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Fig. 4 An example of an unstable limit cycle. In this case, the initial angular velocities make
it impossible for the compass gait to start a walking cycle.
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4 Passive Optimization with Co-Design

In order to acheive co-design with a simple passive compass gait system, an opti-
mization problem was proposed. This optimization problem, outlined in 6, involved
maximizing the point mass at the hip (mH) in order to simulate the compass gait
robot ”carrying” a heavy object. In order to acheive this goal, the lengths below
and above the leg point mass, a and b, were optimized. The leg point mass (m)
also changed based on the total length of the legs based on the given density of
the legs.

Objective: Maximize mH

Subject to:

Dynamic Constraints of System

Design Variables: 0.1<a<1, 0.1<b<1, (m)

Hip Mass: 5<mH<80, (kg)

Leg Mass: m = 5(a+ b), (kg)

End States x1 and x2 are Constrained by Trajectory Generation

(6)

The goal of this optimization problem was to increase the range of initial condi-
tions that caused the compass gait to complete one stable cycle while maximizing
the mass at the hip. In order to acheive this goal a trajectory generation method
was used, where the compass gait model was first simulated using known stable
initial conditions and system parameters and the final position states (x1 and x2)
were recorded and passed to the optimization model. The final position states of
the optimization model were constrained to be equal to the recorded final position
states found in the trajectory generation simulation. This gave the the compass
gait optimization problem a goal to acheive in order to keep the system stable.
Figure 5 shows a diagram outlining this process.

- Trajectory Generation Optimization Problem- -

?

Stable IC’s End States

x1 and x2

Stable, optimized system

New IC’s

Fig. 5 A trajectory generation method was used where a system with stable initial conditions
found end states (x1 and x2) to be used for the optimization problem.

While it was not possible to make all initial conditions stable without a con-
troller, the range of initial conditions was increased. Shown in Figure 6 is the limit
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cycle of the compass gait without optimization with the initial conditions and sys-
tem parameters shown in Table 1. As can be seen, the compass gait system is not
able to complete a full cycle and can be said to be unstable.
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Fig. 6 Limit cycle of the non optimized compass gait over one cycle with the same initial
conditions as the optimized system. It can be seen that the system does not complete a full
cycle.

Table 1 Initial Conditions and System Parameters of the Non-Optimized Compass Gait
Shown in 6

Parameter Value

m(kg) 5
mH(kg) 10
a(m) 0.5
b(m) 0.5
γ(slope, rad) 0.05
x1(rad) -0.23
x2(rad) 0.4
x3(rad/s) -0.24
x4(rad/s) -1.1

The limit cycle of the non-optimized system can be compared to that of the
optimized system in order to see the benefits of the optimization. Shown in Figure
7 is the limit cycle of the optimized compass gait system with the same initial con-
ditions as the non-optimized compass gait. It can be seen that after optimization,
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the system completes a full stable walking cycle. The optimized system param-
eters of the new system are shown in Table 2. Not only can it be seen that the
compass gait system gained stability from the optimization, but it also succesfully
maximized the mass at the hip.

Fig. 7 The limit cycle of the optimized compass gait. It can be seen that the system is stable
for the first walking cycle.

Table 2 Optimized System Parameters of the compass gait.

Parameter Value

m(kg) 8.96
mH(kg) 80
a(m) 0.83
b(m) 0.957

While this optimization problem was succesful, it has its limitations. First,
as previously mentioned, without a using an active controller it is impossible to
guarentee that all initial conditions for the compass gait will result in a stable
walking limit cycle. Also, it is desired that the optimized compass gait system
complete multiple walking cycles instead of just one. In order to fix these two
limitation, active CCD can be used to optimize the problem and simulate the
compass gait over any given number of walking cycles.
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5 Active Control Co-Design of the Compass Gait

In order to perform Active CCD on the compass gait a torque controller was
activated at the hip. The addition of this torque controller allowed for the problem
to be optimized to a more meaningful cost function. Instead of simply optimizing
the hip mass of the compass gait, the time per cycle and the total torque used was
minimized. The cost function used is shown in 7, where τr and tr are reference
scalers used to normalize τ and t. The values of τr and tr which were used are
shown in 8

J =

∫ t

0
(τ/τr)

2 + (t/tr) dt (7)

τr = 6.32(N ∗m), tr = 0.5(s) (8)

Since the hip mass was no longer part of the cost function, it was chosen to
also be a design variable of the system. The constraints of the system remained
the same, outlined in 9.

Minimize: J =

∫ t

0
(τ/τr)

2 + (t/tr) dt

Subject to:

Dynamic Constraints of System

Design Variables: 0.1 < a < 1(m), 0.1 < b < 1(m), 0 < mH < 100kg

Leg Mass: m = 5(a+ b)

End States of x1 and x2 Constrained by Trajectory Generation

(9)

In order to optimize the compass gait through multiple walking cycles and en-
sure stability, the trajectory generation method used in the previous section was
used with continued simulation of the system after the first cycle. After the trajec-
tory generation was performed and the final states of the system were determined,
CCD was performed on the system in order to optimize the design variables and
the torque over one walking cycle. After the optimal values for the design vari-
ables were determined, the system was simulated for a fixed number of cycles with
trajectory optimization (torque optimization) according to the set cost function.
Figure 8 shows a diagram outlining the new trajectory optimization process.

In order to compare the compass gaits performance when CCD is used to other
compass gait scenarios, three simulations were ran and compared: The comass
gait with active CCD (Figure 8), the compass gait with active open loop control
without co-design, and the non-optimized passive compass gait system. Each of
these systems were simulated over 10 cycles and the stability, total torque used,
time per cycle, and optimized design variables were compared. Each system used
the initial conditions and system parameters shown in Table 3.

Shown in Figures 9 and 10 are the limit cycle and total time history of the state
variables for the passive compass gait system when simulated using the given initial
conditions and system parameters. As can be seen the chosen initial conditions
resulted in a stable, well behaved system for the passive compass gait. It can be
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- Trajectory Generation CCD For 1 Cycle Simulation with Torque Opt.- -

?

? -
6

Stable IC’s End States

x1 and x2

New IC’s

End States x1 and x2

Fig. 8 The trajectory generation method used in the previous example was used with con-
tinued trajectory optimization after one cycle.

Table 3 Initial Conditions and System Parameters Used to Simulate the Compass Gait.

Parameter Value

m(kg) 5
mH(kg) 10
a(m) 0.5
b(m) 0.5
γ(slope, rad) 0.05
x1(rad) -0.3
x2(rad) 0.2038
x3(rad/s) -0.41215
x4(rad/s) -1.0501

seen that it takes about three cycles for the system to converge to a single limit
cycle; however, there still exists some oscilitations in the limit cycle.

Similarly, shown in Figures 11 and 12 are the limit cycle and total time history
of the state variables and controls for the compass gait using active open loop
control without co-design. The same trajectory generation method was used during
this simulation, except without co-design (only torque optimization). It can be seen
that it takes approximataly 6 cycles to converge to a single limit cycle; also, the
indivual walking cycles are much more spaced out when compared to the passive
system. However, the final limit cycle is much smaller than that of the passive
limit cycle, resulting in less time per cycle. This can be seen when comparing the
total time history of the active system without co-design to the passive system;
the average time per cycle and total time of the active system is smaller than that
of the passive system.

Finally, the limit cycle and total time history of the compass gait when CCD
is used is shown in Figures 13 and 14. When comparing the limit cycle of the CCD
compass gait to the other two systems, it can be seen that one small waliking
cycle is performed before converging into the final limit cycle in approximataly 4
iterations. It can also be seen from the time history that the CCD compass gait has
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Fig. 9 The limit cycle of the passive compass gait over 10 cycles.

Fig. 10 The total time history of the state variables of the passive compass gait over 10 cycles.

a smaller time per cycle than both the passive system and the open loop system
without co-design. It can also be seen that much less torque is used to control the
system than the compass gait without co-design.

Shown in Table 4 are the optimized design variables found using CCD with
the compass gait system. As can be seen, in order to reduce torque and time per
cycle, the system prefers to have a higher mass at the hip and a longer leg segment
below the point mass on the leg. In order to determine the best design variables
for a system, the bounds of the design variables should be adjusted as desired.

Shown in Table 5 is the average time per cycle and the total time to complete
10 cycles for each compass gait system which was simulated. As can be seen, the
CCD system has the shortest average time per cycle and total time, followed by
the open loop system without control, then the passive system. From these results
it can be said that CCD is more effective in reducing the time per cycle of the
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Fig. 11 The limit cycle of the active compass gait using open loop control without co-design.

Fig. 12 The total time history of the state variables, control, and cost of the active compass
gait without co-design.

Table 4 Optimized Design Variables Found Using CCD

Parameter Value

m(kg) 6.45
mH(kg) 100
a(m) 1
b(m) 0.29

compass gait than control without co-design, and any control at all is much better
than a passive system.

The total torque used during the simulations of the compass gait with CCD
and the open loop system without co-design can also be compared. Shown in Table
6 is the summation of the square of τ over all 10 cycles, this is shown in equation
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Fig. 13 The limit cycle of the compass gait when CCD is used.

Fig. 14 The total time history of the state variables, control, and cost when CCD is used.

Table 5 Average Time per Cycle and Total Time for 10 Cycles of Each Simulation (seconds)

Simulation Average Time/Cycle Total Time Percent Improvement

Passive System 0.680 6.8 N/A
Active System Without Co-Design 0.594 5.94 12.66%

System with CCD 0.531 5.31 21.91%

10. From the table, It can be seen that much more torque is needed to control the
non-optimized compass gait when compared to the compass gait with CCD. From
the results found in these simulations, it can be concluded that using CCD with
the compass gait system can greatly decrease the cost of control when compared
to compass gait systems without co-design or optimization.
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τsum =

t=tf∑
t=0

τ2 (10)

Table 6 Summation of τ2 for the CCD and Open Loop Control System

System
∑

τ2 Percent Improvement

Active System Without Co-Design 133.46 N/A
System with CCD 29.17 78.1%

6 Conclusions and Future Works

During this study, CCD was applied to the compass gait bipedal robot and the
system was optimized first to maximize the mass at the hip with a passive system,
then to minimize the torque used and time per cycle with a torque controller at the
hip. A trajectory generation method was also used in this paper, where a passive
system is first simulated with stable initial conditions and the end states (x1 and
x2) are used during the optimization process in order to ensure a stable system.

From the passive optimization, it was shown that not only can optimization of
the design variables in the compass gait allow for the hip mass to be maximized, but
the optimization can also allow for a greater range of initial conditions which result
in a stable first walking cycle. It was shown that when the optimized compass gait
was given the same initial conditions which would typically result in an unstable
walking cycle with a non-optimized passive system, the system parameters were
optimized so that the compass gait had a stable first walking cycle while still
maximizing the hip mass.

When CCD was used on the active compass gait, it was shown that the cost of
control was reduced by 10.83% when compared to a system with open loop control
without co-design using the same intial conditions and system parameters. Shown
in Table 7 is the total cost of control over 10 walking cycles when CCD is used
compared to active control without co-design. The cost shown is the same cost
function shown above in equation 7. CCD reduced the cost by reducing the torque
used and time per cycle in accordance with the cost function. The compass gait
with CCD used only 21.8% as much torque as the system without co-design and
the time per cycle was reduced by 0.063 seconds, or 10.6%.

Table 7 Cost of Control for the CCD Compass Gait vs Only Open Loop Control

System Cost of Control

Active System Without Co-Design 11.91
System with CCD 10.62
Percent Improvement 10.83%

One of the main limitations of this study is that CCD was applied to the
compass gait over only one walking cycle using the trajectory generation method,
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then the compass gait was simulated with open-loop control for the given number
of cycles. Ideally, when using CCD for a system with cyclic behavior it would be
desired that the system parameters be optimized based on the entire trajectory
of the system (over all cycles); however, due to the structure of the Dymos code,
it was only possible to optimize the first walking cycle of the compass gait during
this study. In future studies, the compass gait should be optimized over the entire
trajectory in order to obtain the best possible system parameters for the system.

Another future study which should be conducted is the use of a closed loop
control algorithm in order used to perform CCD. One example of this is using
MPC or LQR control in order to optimize and control the compass gait. The
use of closed loop CCD with the compass would result in more optimal system
parameters and better trajectory optimization.
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A Compass Gait Equations
Shown in this appendix is a more complete version of the dynamics equations of the compass
gait. The swing stage dynamics can be written in standard planar manipulator dynamics form,
shown in 11. The M, N, G, and U matrices are also shown in 12, 13, 14, and 15 respectively.

M(X)Ẍ+N(X, Ẋ)Ẋ+G(X) = τU (11)

M =

 mb2 −mlbcos(x2 − x1)

−mlbcos(x2 − x1) mH l2 +m(l2 + a2)

 (12)

N =

 0 mlbẋ2sin(x2 − x1)

−mlbẋ1sin(x2 − x1) 0

 (13)

G =

 mgbsin(x1)

−(mH l +m(a+ l))gsin(x2)

 (14)

U =



1

−1

0

0


(15)

The transition equations when heel strike occurs are shown in 16 and 17, where x+ sig-
nifies a state variables after heel strike and x− signals a state variable before heel strike. The
transition matrices Q− and Q+ are shown in 18 and 19. Note that α represents half the angle
between the swing and stance legs.

x+
1

x+
2

 =

[
0 1
1 0

]x−
1

x−
2

 (16)

Q+

x+
3

x+
4

 = Q−

x−
3

x−
4

 (17)

Q− =

−mab −mab+ (mH l2 + 2mal)cos(2α)

0 −mab

 (18)

Q+ =

mb(b− lcos(2α)) ml(l − bcos(2α)) +ma2 +mH l2

mb2 −mblcos(2α)

 (19)
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